STATEMENT OF OWNERSHIP AND MANAGEMENT

MATHEMATICS OF COMPUTATION is published quarterly in January, April, July, and October each year by the American Mathematical Society. The Office of Publication and the General Business Office are located at 201 Charles Street, Providence, Rhode Island 02904. The Publisher is the American Mathematical Society. The Managing Editor is Christine Lefian, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940. There are no bondholders, mortgagees or other security holders.

EXTENT AND NATURE OF CIRCULATION. Average number of copies of each issue during the preceding twelve months: total number of copies printed: 2,300; sales through dealers and carriers, street vendors and counter sales: 235; paid mail subscriptions: 1,671; total paid circulation: 1,906; samples, complimentary and other free copies: 72; total distribution: 1,978; office use, left over, unaccounted, spoiled after printing: 322; copies distributed to news agents but not sold: 0; total: 2,300. Actual number of copies of single issue published nearest to filing date: same as above.

Second class postage is paid at Providence, Rhode Island Volume 50, Number 181, January 1988, Pages 1-360 Copyright © 1988 by the American Mathematical Society US ISSN 0025-5718

A Gourmet Guide to Typesetting with the A_MS -T_EX macro package

M. D. SPIVAK, Ph.D.

The Joy of T_EX is the user-friendly user's guide for \mathcal{A}_MS -T_EX, an extension of T_EX, Donald Knuth's revolutionary program for typesetting technical material. \mathcal{A}_MS -T_EX was designed to simplify the input of mathematical material in particular, and to format the output according to any of various preset style specifications.

There are two primary features of the T_EX system: it is a computer system for typesetting technical text, especially text containing a great deal of mathematics; and it is a system for producing beautiful text, comparable to the work of the finest printers.

Most importantly, T_EX 's capabilities are not available only to T_EX perts. While mathematicians and experienced technical typists will find that T_EX allows them to specify mathematical formulas with greater accuracy and still have great control over the finished product, even novice technical typists will find the manual easy to use in helping them produce beautiful technical T_EXt .

This book is designed as a user's guide to the AMS-TEX macro package and details many features of this extremely useful text processing package. Parts 1 and 2, entitled "Starters" and "Main Courses," teach the reader how to typeset most normally encountered text and mathematics. "Sauces and Pickles," the third section, treats more exotic problems and includes a 60-page dictionary of special TEX niques.

Exercises sprinkled generously through each chapter encourage the reader to sit down at a terminal and learn through experimentation. Appendixes list summaries of frequently used and more esoteric symbols as well as answers to the exercises.

WHEN MATHSCI IS ONLINE MATHEMATICS IS ON THE SCREEN

800,000 Entries in Seconds

MathSci is the online database that finds, in a matter of seconds, any information published in Mathematical Reviews (MR), Current Mathematical Publications (CMP), Current Index to Statistics (CIS), and the Index to Statistics and Probability by John Tukey and Ian Ross. These combined sources give you over 800,000 entries in all areas of the mathematical sciences.

Monthly Updates

MathSci is updated monthly, with over 3,700 new entries from MR and 4,000 from CMP; also quarterly updates of 750 new entries from CIS.

Easy Fingertip Access

When can you use MathSci? Anytime... 24 hours a day. Now you can search for all the information from MR, CMP, CIS, and the Tukey Index when you want it and need it. From your office. From your home. Anywhere you can connect a modem to a microcomputer (or terminal) and dial a local number.

Where to Get Online with MathSci

MathSci is produced by the American Mathematical Society, a source of mathematical materials for nearly 100 years. MathSci can be accessed on BRS, DIALOG, CompuServe, EasyNet, and the European Space Agency (ESA). To learn more about MathSci, contact Taissa Kusma at the AMS by calling 800-556-7774 in the continental United States.

DANIEL SHANKS, DEDICATION Special Issue Mathematics of Computation

This special issue of Mathematics of Computation (Volume 48, Number 177, January 1987) is dedicated to Daniel Shanks on the occasion of his 70th birthday. Since 1959, when Shanks joined the Editorial Committee for this journal, he has been a guiding force in shaping the computational number theory component of the journal, and has had an immense influence in the field. This volume contains papers by some of the top researchers in the field and covers such topics as elliptic curves, primality testing, congruences, class groups, and cyclotomic fields. Although a numbered issue of the Mathematics of Computation journal, it will serve as a stand alone reference work for computational number theory.

Contents

William W. Adams, Characterizing Pseudoprimes for third-order linear recurrences

Leonard M. Adelman, Dennis R. Estes, and Kevin S. McCurley, Solving bivariate quadratic congruences in random polynomial time Richard Blecksmith, John Brillhart, and Irving

Gerst, Parity results for certain partition functions and identities similar to theta function identities Johannes Buchmann, The computation of the fundamental unit of totally complex quartic orders Johannes Buchmann and H. C. Williams, On principal ideal testing in totally complex quartic fields and the determination of certain cyclotomic constants

Nicholas Buck, Lones Smith, Blair K. Spearman, and Kenneth S. Williams, The cyclotomic numbers of order fifteen

Duncan A. Buell, Class groups of quadratic fields. II

David G. Cantor, Computing in the Jacobian of a hyperelliptic curve

H. Cohen and A. K. Lenstra, Implementation of a new primality test

H. Cohen and J. Martinet, Class groups of number fields numerical heuristics

Harvey Cohn and Jesse Deutsch, Application of symbolic manipulation to Hecke transformations of modular forms in two variables

T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields Daniel Gordon, Douglas Grenier, and Audrey Terras, Hecke operators and the fundamental domain for $(SL(3, \mathbb{Z}))$ Marie Nicole Green Second units in and audio

Marie-Nicole Gras, Special units in real cyclic sextic fields

R. K. Guy, C. B. Lacampagne, and J. L. Selfridge, Primes at a glance

Neal Koblitz, Elliptic curve cryptosystems **D. H. Lehmer and Emma Lehmer**, Cyclotomic resultants

H. W. Lenstra, Jr. and R. J. Schoof, Primitive normal bases for finite fields

R. A. Mollin, Class numbers of quadratic fields determined by solvability of diophantine equations **Peter L. Montgomery**, Speeding the Pollard and elliptic curve methods of factorization

Morris Newman and Robert C. Thompson, Numerical values of Goldberg's coefficients in the series for $\log(e^x e^y)$

A. M. Odlyzko, Ón the distribution of spacings between zeros of the zeta function

M. Pohst, On computing isomorphisms of equation orders

Carl Pomerance, Very short primality proofs **Herman J. J. te Riele**, On the sign of the difference $\pi(x) - li(x)$

Robert D. Silverman, The multiple polynomial quadratic sieve

Jonathan W. Tanner and Samuel S. Wagstaff, Jr., New congruences for the Bernoulli numbers Heinz M. Tschöpe and Horst G. Zimmer, Computation of the Néron-Tate height on elliptic curves

Lawrence C. Washington, Class numbers of the simplest cubic fields

H. C. Williams, Effective primality tests for some integers of the forms $A5^n - 1$ and $A7^n - 1$

H. C. Williams and M. C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm

Don Zagier, Large integral points on elliptic curves

1980 Mathematics Subject Classification 11 ISSN 0025-5718 448 pages (softcover), January 1987 Individual member \$29, List price \$48, Institutional member \$38

To order, please specify SHANKS/MC

Shipping/Handling 1st book \$2, each add'l \$1, \$25 max By air, 1st book \$5, each add'l \$3, \$100 max

Prepayment required Order from AMS, PO Box 1571, Annex Station, Providence, RI 02901-9930, or call 800-556-7774 to use VISA or MasterCard

 4 NDED

ABCDEFGHIJ — 898

(Continued from back cover)

Francis J. Ravner. Weak Uniform Distribution for Divisor Functions. I	335
Reviews and Descriptions of Tables and Books	343
White 1, Wait and Mitchell 2, Press, Flannery, Teukolsky and Vetterling	
3, Vetterling, Teukolsky, Press and Flannery 4, Prudnikov, Bryčkov and	
Maričev 5, Murtagh and Heck 6, Borwein and Borwein 7, Kranakis 8,	
Kronsjö 9, Ortiz, Editor 10, Chui, Schumaker and Ward, Editors 11,	
Mori and Piessens, Editors 12	
Corrigendum	359
Supplement to "Tables of Fibonacci and Lucas Factorizations" by John	
Brillhart, Peter L. Montgomery, and Robert D. Silverman	$\mathbf{S1}$

No microfiche supplement in this issue

MATHEMATICS OF COMPUTATION TABLE OF CONTENTS

January 1988

James H. Bramble and Joseph E. Pasciak, A Preconditioning Technique for	
Indefinite Systems Resulting from Mixed Approximations of Elliptic	
Problems	1
Stanley Osher and Eitan Tadmor, On the Convergence of Difference Appoxi-	
mations to Scalar Conservation Laws	19
J. P. Vila, High-Order Schemes and Entropy Condition for Nonlinear Hyper-	
bolic Systems of Conservation Laws	53
Gerard R. Richter, An Optimal-Order Error Estimate for the Discontinuous	
Galerkin Method	75
Jack K. Hale, Xiao-Biao Lin, and Geneviève Raugel, Upper Semicontinuity	
of Attractors for Approximations of Semigroups and Partial Differential	
Equations	89
G. A. Chandler and I. G. Graham, Product Integration-Collocation Methods	
for Noncompact Intregral Operator Equations	125
Enrique Fernandez-Cara and Carlos Moreno, Critical Point Approximation	
Through Exact Regularization	139
J. E. Dennis, Jr. and Guangye Li, A Hybrid Algorithm for Solving Sparse	
Nonlinear Systems of Equations	155
Walter Zulehner, A Simple Homotopy Method for Determining All Isolated	
Solutions to Polynomial Systems	167
A. Gerasoulis , A Fast Algorithm for the Multiplication of Generalized Hilbert	
Matrices with Vectors	179
Alan Weiser and Sergio E. Zarantonello, A Note on Piecewise Linear and	
Multilinear Table Interpolation in Many Dimensions	189
Thomas A. Grandine, A Stable Evaluation of Multivariate Simplex Splines .	197
R. E. Scraton , A Comparison of Some Taylor and Chebyshev Series	207
T. Iwaniec and A. Lutoborski, Asymptotic Expansions of Multiple Integrals	
of Rapidly Oscillating Functions	215
R. Wong, Asymptotic Expansion of $\int_0^{\pi/2} J_{\nu}^2(\lambda \cos \theta) d\theta$	229
R. Kannan, A. K. Lenstra, and L. Lovász, Polynomial Factorization and	
Nonrandomness of Bits of Algebraic and Some Transcendental Numbers	235
John Brillhart, Peter L. Montgomery, and Robert D. Silverman, Tables of	
Fibonacci and Lucas Factorizations	251
Jeff Young and Duncan A. Buell, The Twentieth Fermat Number is Composite	261
D. H. Lehmer, The Sum of Like Powers of the Zeros of the Riemann Zeta	
Function	265
David H. Bailey, Numerical Results on the Transcendence of Constants Involv-	
ing π , e , and Euler's Constant	275
David H. Bailey, The Computation of π to 29,360,000 Decimal Digits Using	
Borweins' Quartically Convergent Algorithm	283
W. F. Lunnon, Integer Sets with Distinct Subset-Sums	297
Pascual Llorente and Jordi Quer, On the 3-Sylow Subgroup of the Class Group	
of Quadratic Fields	321

(Continued on inside back cover)